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Attractor for the mean-field equations of the hysteretic dynamics of a quantum spin model:
Analytical solution

Subir K. Sarkaf and Debashish Boe
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
(Received 20 June 1996

Recently Banerjee, Dattagupta, and Sen derived the mean-field equations for the three components of the
magnetization in the context of a quantum spin model in a rotating external magnetitPiigisl. Rev. E52,
1436(1995]. We provide here the analytical solution for the attractor of this dynamics and prove that there is
no hysteresis loss on the attracti#1063-651X%97)10102-7

PACS numbg(s): 05.70.Ln, 75.60-d, 75.10.Jm

Over the past few years there has been considerablbe three components of the spin operator hnd the self-
progress in the understanding of the phenomenon of hysteconsistent mean-field operating in thalirection and is ulti-
esis in model systems with both large and small number ofmately taken to be proportional to the average magnetization
degrees of freedorfil—14]. In some of these systems, hys- m, in the z direction.V represents the coupling between the
teresis is purely dynamical in origin, whereas in others irressystem and the reservoir and is invariant with respect to ro-
versibility is caused by interaction with a heat bath. Whiletation in thex-y plane. FinallyHg is the bath Hamiltonian.
some of these systems are purely classical in nature, others Now, definem,(t), my(t), andm,(t) to be the expecta-
require quantum mechanical description. When many detion values ofoy, oy, ando,, respectively, with respect to
grees of freedom are present, interaction among these vatike relevant density matrig(t) at timet. The dynamics for
ables leads to cooperative effects and as some external pax(t), my(t), and m,(t) as derived in Ref[15] is finally
rameters are varied, phase transition may take place. Orgiven, for arbitrarily large values of the strengkhof the
such system in which both cooperative and quantum effectsansverse fieldso that the effect of large quantum fluctua-
are present was recently proposed by Banerjee, Dattaguptions are taken into accouynty the following set of equa-
and Ser{15]. They investigated the phenomenon of hyster-tions:
esis in an Ising system in an external field rotating in the
transverse plane. Using a mean-field approximation, they de-
rived the dynamics for the expectation values for the three dm,
components of magnetization by using a microscopic

1‘*2
= mx[ —A—\ —5 coS2wt
0

. ) . dt h
system-plus-reservoir approach. These equations are nonlin-
ear in nature and in Ref15] they were solved numerically 2
to find the asymptotic periodic attractor. What we do in this +my| 2h—\ —— sin2wt cost
paper is to provide an analytical solution for this asymptotic ho
periodic attractor. In the process, we prove that there is no h r
dissipation due to hysteresis, if the mean-field dynamics is +m. = 2T sin2wt—\ (h+ o) cosZot
indeed governed by the equations derived by the authors z ho2
[15].
The mean-field Hamiltonian for the system-plus-reservoir L
that is being studied here is given by +2) hg cos2ut tanhBhy, ®)
W = my —AN— Fg Sl (0]

HereH, is the mean-field system Hamiltonian in the rotating

transverse field and is expressed as 2

+m,| —2h—A 2 Sin2wt cos 2ot

0
Hs:_haz_rx(t)ax_ry(t)ay 2
(h+ )"

with I',(t) =T cos2wt andI',(t) =T sin2wt. They represent +my| 21" cos2ut—A h2 sin2wt
the two components of the magnetic field of strenBtho- 0
tating in thex-y plane with frequency @. oy, oy, ando, are r .

+2\ — sin2ut tanhBhy, (4)

0
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dm, . (h+ )l . (h+ )l r .
W=mx 2I" sin2wt—A\ Tz COSZwt 20w Sln¢=)\—hz— My— 2\ - tanhBhy—2ah sing
0 0 0
(h+ o)l | I
+my| —2I" cos2ot—\ Tz sin2wt +| aN+al v COsp. (12
0 0
r? h+w From Eq.(4) for m,(t) also one arrives at the same set of
_ - - ' y
My — 2N A h3 2 ho tanhgho. (5 Eqgs.(11) and(12). This is as it should be since the dynamics

is invariant with respect to rotation in they plane.
Here ho: \/WZ-F_FZ, A is a phenomen0|ogica| relax- Now definea CO&ZS:X andaSin¢:Y. It should be noted
ation rate Characterizing the heat bath WT*]-, T being thatasin¢> is directly proportional to the hysteresis loss per
the temperature. Once the dynamics evolves into the asymgycle, as defined in Ed6). Rewriting Egs.(11) and(12) in
totic periodic attractor, hysteresis loss per cycle in the dyterms ofX andY, one gets
namics is given by

2(h+ @)X+ \Y=2T'mg, (13)
A= f Tm,dy (1) +mydly(1)] 6 and
0
_ r2 I'(h+ )
with T=m/w. A1+ FZ X—Z(h+ w)Y=—\ T mg
0 0

We will now find out the solution for the asymptotic pe-
riodic attractor of the set of coupled ordinary differential r
equations represented by E@8), (4), and (5) analytically. +2\ —tanhshy.  (14)
To do this, the first point to be noted is that the Hamiltonian 0
without the external rotating field is symmetric with respectTreatingX andY as unknown variables, for which Eq4.3)
to rotation in thex-y plane and the external field is of con- and (14) are the determining linear equations, one immedi-
stant magnitude while rotating in they plane with a con-  ately arrives at the following:
stant angular velocity @& In order to satisfy invariance with
respect to both rotation and time translation that is inherent 1 ) I'(h+ w) )
in the dynamics, the only possible solution for the periodicX= g | 4(h+ @)I'mo—A Tz Mo+ 2\ ho tanhgh
attractor can be one in which the magnetization vector 0

(m,(t),my(t),m,(t)) also has a constant magnitude and its (15)
projection in thex-y plane maintains a constant angular re-gnq
lationship with respect to the instantaneous vector
(I'x(t),I"y(t)) representing the external field and theom- 1 I'mg ) Ir?
ponent of magnetization is constant. Thus Y=p|2A 77 (h+w)*+2 I'mg| 1+ nZ
0 0
m,= a co§2wt+ ¢), (7) r
—4\ - (h+ w)tanhBhg |, (16)
m,=a sin2et+ ¢), 8) °
where
and
2
my=mp. (9) D=4(h+w)2+\? 1+ 7).
0

Substituting these in Ed5), one gets Using the above expressions for and Y in Eq. (10), a

somewhat lengthy algebra leads to the following equation:

2nin o]+ 20 T antghg— 2T a s
M| — )\+)\Hg + )\h—otanhB o— 2@ sing ht o
Mo=—4 tanhBh,. a7
(h+w)T 0
—Na ——— cosp=0. (10) _ .
hg As in Ref.[15] we takeh=m, and then Eq(17) is a tran-

scendental equation that determines the fixed value of the
Similarly, substituting fom, , m, , andm, from Eqs.(7), (8), component of the magnetization in the attractor and has to be
and(9) in Eq. (3) and equating the coefficients of siaRand  determined numerically. Once that is done, one can find out
cos2wt on both sides, one obtains the following two equa-the values ofX andY and thus the values @i and ¢ using
tions: Egs. (15 and (16). However, it turns out that' vanishes
identically always. Since the denominatdrin the expres-
2aw cosp=2I'my— N a Sing—2ah cosp (11 sion (16) is positive definite, it is enough to show that the
numerator is zero. But that follows simply by using E#j7)
and to evaluate the numerator.
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We have checked the correctness of the analytical resultgector and then stays that way. We infer that the nonvanish-
presented here by numerically integrating the set of B2)s. ing values of hysteresis loss reported in Ré] are only
(4), and(5) for m, (u=x,y,2), starting from the initial con- finite time effects. In summary, we utilize symmetry argu-
dition m,=1, m,=m,=0. We find that the solution always ments and numerical investigation of the equatit®)s (4),
converges to an attractor of the type described in the papeand (5) to infer that thez component of magnetization ap-
In each case, the constant valuenaf to which the solution  proaches a constant value asymptotically. Using this knowl-
converges turns out to be the same as given by the solutiogdge as well as the forms aof,(t) and my(t) that we get
of the transcendental E(L7), which we solve separately for from symmetry arguments, we derive the analytical solution
the same set of parameter values. The time axis is divideghr the asymptotic periodic attractor. This solution does not
into intervals of lengthT =x/w and for every such interval, exhibit any hysteresis loss.
we computeéA, the hysteresis loss for that cycle, as defined in
Eq. (6). We find thatA invariably converges to zero, no
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